Axle Rank Calibration and Axle Type Calibration, New Tools to Improve the Accuracy of Pavement Portable WIM Systems

Ir Sophie JEHAES
Belgian Road Research Centre

ICWIM3 — Orlando — 13th — 15th of May, 2002

Portable Pavement WIM System

- Definition: a WIM system laid on the road surface (screwed onto the pavement or glued at the surface).
- Characteristics compared to fixed WIM system:
 - weaker lifetime,
 - equivalent accuracy,
 - usable on other roads than motorways.
- Description: 1 (or 2) weighing sensor(s) & 2 (or 1) inductive loop(s) connected to data acquisition unit.
- Technology: piezo-polymer or piezo-resistive tubes & capacitive mats or strips.

Main Constraints

- Duration of measurement < 1-2 weeks.</p>
- Installation/removing < 1 hour with 2-3 people.</p>
- Punctual measurement shots through a network, not fully equipped with fixed systems.
- System above the road may induce some noise disturbances & additional dynamic interactions (it looks like a small hump for a truck). That limits the possible accuracy.

Major Applications

- Traffic statistics (control, management, prediction, frequency or classification distribution, ...).
- Studies (economical, environmental, safety).
- Pavement design analysis.
- Finding future weighing locations for enforcement.
- Direct pre-selection.
- Never for load enforcement and economical applications, <u>except</u> if available accuracy satisfies both legal authorities & users.

Manual Calibration Procedure

- Calculation of the calibration parameters:
 - rented test vehicle(s) make(s) several passes on the road (at least 10 runs),
 - disadvantages: time and cost.
- Implementation of the calibration parameters:
 - after the measurements,
 - directly into the data file,
 - during measurement: system is at 100 % of its sensitivity range and no disturbance of the normal traffic during the calibration phase.

Calibration Formulae

Calibration on the mean square error:

$$C = \frac{\sum_{i} n_{i} W s_{i}^{2}}{\sum_{i,k} W s_{i} W d_{ik}}$$

- Calibration by lorry type:
 - one calibration coefficient for each type (silhouette) of lorry (rigid lorry, tractor + semi-trailer, lorry + trailer).
- Calibration by axle rank:
 - one calibration coefficient for each rank (and/or type) of axle within a lorry.

Test Description

- System: capacitive mat (MAT) and capacitive strip (STRIP) (did not work properly).
- On highway RN10 (2x2 lanes) near Paris (France).
- Heavy traffic (30,000 vehicles/day 25 % of trucks).
- Pavement characteristic = 'good' site (class II).
- Test (3 days) during a sunny week.
- Two test populations:
 - 2 test vehicles (special 2-axle rigid truck (> 13 tons for 2nd axle) and 5-axle semi-trailer with various loads),
 - pre-weighed vehicles taken from the traffic flow and statically weighed.

Analysis Procedure

- Calibration factors assessed to work at maximal possible sensitivity range (100 %).
- Calibration factors based on test vehicles.
- Accuracy defined by measuring 2nd population (preweighed vehicles) calibrated with those values (Full reproducibility conditions R2).
- Elimination of outliers after visual control on site (vehicle passing partially off-road, flat tyre, people stepping on transmission cable, ...) or after statistical test, such as Dixon's test.

Considered Calibration Methods -

Based on	Using values of	Nber of calib. factor	#
2 -axle truck	gross weight	1	Α
	axles all together	1	В
	axles per position/rank	2 (for 1st & 2nd axle) (*)	С
	axles per type	1 (for single axles) (*)	D
5-axle semi- trailer	gross weight	1	Е
	axles all together	1	F
	axles per position/rank	5 (for 1 st , 2 nd , 3 rd , 4 th , & 5 th axle) (*)	G
	axles per type	2 (for single axles and tridem axles) (*)	Н

Considered Calibration Methods - 1

Based on	Using values of	Nber of calib. factor	#
2 -axle truck and 5-axle semi- trailer	gross weight	1	Ι
	axles all together	1	J
	axles per position/rank	5 (for 1 st , 2 nd , 3 rd , 4 th , & 5 th axle) (*)	K
	axles per type	2 (for single axles and tridem axles) (*)	Г
	axles per position/rank	9 (average of the first five axles' values is used as value for other axles)	М
	axles per type	3 (value for tridem axles is used for tandem axles)	N

Results for the MAT System -

Results for the MAT System - I

Results for the MAT System - I

Some Explanations

Strange and unclear results, due to:

- Type of test vehicle:
 - 2-axle truck has a 2nd axle > 13,5 tons.
- Average weights of pre-weighed population:
 - 2-axle population has an average GW of 11,8 tons (less than the 2nd axle load of the test vehicle),
 - Average weight of the single axles of the pre-weighed vehicle population is about 6,8 tons.

Results were corelated with tests in Belgium:

Same shape but worth accuracy.

Possible Application - I

Calibration factors are slightly independent of test site:

- If test sites belong to same quality class.
- If use of identical test vehicle.
- For MAT System: calibration factor based on GW varies between 1,76 & 1, 86.

If calibration factor based on single axle is constant.

We assume that calibration factor based on a tridem axle (F_{TT}) is also constant and will slightly vary in the same amplitude as for the single axle (F_{SA}).

Possible Application - II

- If we know (F_{SA A}) for site A and B (F_{SA B}),
- If we know (F_{TT A}) for site A,
- Then we could write: $F_{SA,A} / F_{SA,B} = F_{TT,A} / F_{TT,B}$
- \Rightarrow $F_{TT_B} = F_{TT_A} * F_{SA_B} / F_{SA_A}$

One test done:

- δ_{min} =33 for GW if calibration based on 2-axle truck
- δ_{min} =26 for GW if calibration based on 2-axle truck & 5-axle semi-trailer
- δ_{min} =28 for GW if calculated by this method

Conclusions

- Best calibration method choice depends on the available trucks and the useful criterion.
 - Calibration by axle type: based on mix of rigid trucks & vehicles equipped with tandem or tridem axle,
 - Calibration by axle rank: each axle has a calib. value,
 - Based on special 2-axle rigid truck (with axle load higher than the normal one), on the GW criterion.
- Easily implemented in a traffic analysis software.
- Approximation of calibration factor for tandem & tridem (F_{TT_A}) , based on single axles for 2 sites (F_{SA_A}, F_{SA_B}) .